

HYDRA-XL

Keeping You Connected.

SEMI PREMIUM FLUSH

- Designed for plain end pipe with internal and external flush profiles without swaging.
- A true double shoulder design for torque capacity. Reduced sensitivity to over-torque.
- Internal and external radial metal seals with torque energized face seals.
- External angled torque shoulder with torque energized seal.
- Patented leak tight square thread form with a fast stab and make up. Makes up in 6 turns from stab.
 - 70% Tension and Compression Efficiency.
- Collapse resistance equal to API collapse pressures.
 - Internal Pressure rated to 80% of pipe body internal yield pressure.

Precision Connections, LLC 11200 Mesa Dr Houston, Texas 77078 o. (713) 678-8900 Technical Support
c. (832) 405-3711
Mike.Nations@precision-llc.com

Precision Connections, LLC

11200 Mesa Dr

Houston, Texas 77078

o. (713) 678-8900

Technical Support

c. (832) 405-3711

Mike.Nations@precision-llc.com

Keeping You Connected.

HYDRA-XL

FLUSH CONNECTION DATA

Pipe Body

Nominal OD
7.625 inches
Nominal Weight
29.70 lb/ft
Wall Thickness
0.375 inches
Plain End Weight
29.04 lb/ft
Standard Drift
6.750 inches
Nominal ID
6.875 inches
Critical Section Area
8.541 in²

Connection

Connection OD

Make Up Loss

Critical Section Area

5.979 in²

Internal Pressure Rating

External Pressure Rating

100% API

Tension Efficiency

70%

Compression Efficiency

70%

7.625 inches

The HYDRA-XL utilizes a patented advanced square stepped thread design for a deep easy stab. The box and pin threads are asymmetric run-in / run-out threads that maximize the critical section area available for pull strength. Square threads are used because of their flexibility in a bend and ability to absorb high tensile and compressive loads.

Patent No: US 9,593,786

				HC-		3	60				961/
HC-L80 (80 ksi min)			P110 (110 ksi min)			P110-EB		(125ksi min)			
Yield	Reference	Optimum	Max	Yield	Reference	Optimum	Max	Yield	Reference	Optimum	Max
Load	Depth	Torque	Torque	Load	Depth	Torque	Torque	Load	Depth	Torque	Torque
(Lbs)	(Ft.)	(Ft-Lbs)	(Ft-Lbs)	(Lbs)	(Ft.)	(Ft-Lbs)	(Ft-Lbs)	(Lbs)	(Ft.)	(Ft-Lbs)	(Ft-Lbs)
								(10)	19	A	
478,307	10,900	5,750	14,600	657,673	15,000	7,900	20,050	747,355	17,100	9,000	22,800

The performance properties given in these data tables are calculated per API 5C3. Calculations are based on nominal wall thickness. Loads do not reflect a design safety factor for walls thinner than nominal or wall defects. Reference depth includes a 1.5 design factor. However, it does not consider bending, temperature, buoyancy or other load considerations.

